Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 11: 1352508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606289

RESUMO

Antibodies are proteins produced by our immune system that have been harnessed as biotherapeutics. The discovery of antibody-based therapeutics relies on analyzing large volumes of diverse sequences coming from phage display or animal immunizations. Identification of suitable therapeutic candidates is achieved by grouping the sequences by their similarity and subsequent selection of a diverse set of antibodies for further tests. Such groupings are typically created using sequence-similarity measures alone. Maximizing diversity in selected candidates is crucial to reducing the number of tests of molecules with near-identical properties. With the advances in structural modeling and machine learning, antibodies can now be grouped across other diversity dimensions, such as predicted paratopes or three-dimensional structures. Here we benchmarked antibody grouping methods using clonotype, sequence, paratope prediction, structure prediction, and embedding information. The results were benchmarked on two tasks: binder detection and epitope mapping. We demonstrate that on binder detection no method appears to outperform the others, while on epitope mapping, clonotype, paratope, and embedding clusterings are top performers. Most importantly, all the methods propose orthogonal groupings, offering more diverse pools of candidates when using multiple methods than any single method alone. To facilitate exploring the diversity of antibodies using different methods, we have created an online tool-CLAP-available at (clap.naturalantibody.com) that allows users to group, contrast, and visualize antibodies using the different grouping methods.

2.
Methods Mol Biol ; 2552: 219-235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36346594

RESUMO

A great effort to avoid known developability risks is now more often being made earlier during the lead candidate discovery and optimization phase of biotherapeutic drug development. Predictive computational strategies, used in the early stages of antibody discovery and development, to mitigate the risk of late-stage failure of antibody candidates, are highly valuable. Various structure-based methods exist for accurately predicting properties critical to developability, and, in this chapter, we discuss the history of their development and demonstrate how they can be used to filter large sets of candidates arising from target affinity screening and to optimize lead candidates for developability. Methods for modeling antibody structures from sequence and detecting post-translational modifications and chemical degradation liabilities are also discussed.


Assuntos
Anticorpos , Desenvolvimento de Medicamentos , Anticorpos/uso terapêutico
3.
Methods Mol Biol ; 2552: 309-321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36346600

RESUMO

Affinity maturation is an important stage in biologic drug discovery as is the natural process of generating an immune response inside the human body. In this chapter, we describe in silico approaches to affinity maturation via a worked example. Both advantages and limitations of the computational methods used are critically examined. Furthermore, construction of affinity maturation libraries and how their outputs might be implemented in an experimental setting are also described. It should be noted that structure-based design of biologic drugs is an emerging field and the tools currently available require further development. Furthermore, there are no standardized structure-based strategies yet for antibody affinity maturation as this research relies heavily on scientific logic as well as creative intuition.


Assuntos
Anticorpos , Humanos , Afinidade de Anticorpos , Anticorpos/química
4.
J Biol Chem ; 292(42): 17449-17460, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28878017

RESUMO

The neonatal Fc receptor FcRn plays a critical role in the trafficking of IgGs across tissue barriers and in retaining high circulating concentrations of both IgG and albumin. Although generally beneficial from an immunological perspective in maintaining IgG populations, FcRn can contribute to the pathogenesis of autoimmune disorders when an abnormal immune response targets normal biological components. We previously described a monoclonal antibody (DX-2507) that binds to FcRn with high affinity at both neutral and acidic pH, prevents the simultaneous binding of IgG, and reduces circulating IgG levels in preclinical animal models. Here, we report a 2.5 Å resolution X-ray crystal structure of an FcRn-DX-2507 Fab complex, revealing a nearly complete overlap of the IgG-Fc binding site in FcRn by complementarity-determining regions in DX-2507. This overlap explains how DX-2507 blocks IgG binding to FcRn and thereby shortens IgG half-life by preventing IgGs from recycling back into circulation. Moreover, the complex structure explains how the DX-2507 interaction is pH-insensitive unlike normal Fc interactions and how serum albumin levels are unaffected by DX-2507 binding. These structural studies could inform antibody-based therapeutic approaches for limiting the effects of IgG-mediated autoimmune disease.


Assuntos
Anticorpos Monoclonais Murinos/química , Antígenos de Histocompatibilidade Classe I/química , Imunoglobulina G/química , Receptores Fc/antagonistas & inibidores , Receptores Fc/química , Animais , Cristalografia por Raios X , Células HEK293 , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Camundongos , Estrutura Quaternária de Proteína , Ratos , Receptores Fc/genética
5.
J Biol Chem ; 289(34): 23596-608, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-24970892

RESUMO

Plasma kallikrein (pKal) proteolytically cleaves high molecular weight kininogen to generate the potent vasodilator and the pro-inflammatory peptide, bradykinin. pKal activity is tightly regulated in healthy individuals by the serpin C1-inhibitor, but individuals with hereditary angioedema (HAE) are deficient in C1-inhibitor and consequently exhibit excessive bradykinin generation that in turn causes debilitating and potentially fatal swelling attacks. To develop a potential therapeutic agent for HAE and other pKal-mediated disorders, we used phage display to discover a fully human IgG1 monoclonal antibody (DX-2930) against pKal. In vitro experiments demonstrated that DX-2930 potently inhibits active pKal (Ki = 0.120 ± 0.005 nM) but does not target either the zymogen (prekallikrein) or any other serine protease tested. These findings are supported by a 2.1-Å resolution crystal structure of pKal complexed to a DX-2930 Fab construct, which establishes that the pKal active site is fully occluded by the antibody. DX-2930 injected subcutaneously into cynomolgus monkeys exhibited a long half-life (t½ ∼ 12.5 days) and blocked high molecular weight kininogen proteolysis in activated plasma in a dose- and time-dependent manner. Furthermore, subcutaneous DX-2930 reduced carrageenan-induced paw edema in rats. A potent and long acting inhibitor of pKal activity could be an effective treatment option for pKal-mediated diseases, such as HAE.


Assuntos
Anticorpos/imunologia , Calicreínas/imunologia , Sequência de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Humanos , Calicreínas/sangue , Dados de Sequência Molecular , Ratos , Ratos Sprague-Dawley , Ressonância de Plasmônio de Superfície
6.
Bioinformatics ; 28(20): 2608-14, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23053206

RESUMO

MOTIVATION: An effective docking algorithm for antibody-protein antigen complex prediction is an important first step toward design of biologics and vaccines. We have recently developed a new class of knowledge-based interaction potentials called Decoys as the Reference State (DARS) and incorporated DARS into the docking program PIPER based on the fast Fourier transform correlation approach. Although PIPER was the best performer in the latest rounds of the CAPRI protein docking experiment, it is much less accurate for docking antibody-protein antigen pairs than other types of complexes, in spite of incorporating sequence-based information on the location of the paratope. Analysis of antibody-protein antigen complexes has revealed an inherent asymmetry within these interfaces. Specifically, phenylalanine, tryptophan and tyrosine residues highly populate the paratope of the antibody but not the epitope of the antigen. RESULTS: Since this asymmetry cannot be adequately modeled using a symmetric pairwise potential, we have removed the usual assumption of symmetry. Interaction statistics were extracted from antibody-protein complexes under the assumption that a particular atom on the antibody is different from the same atom on the antigen protein. The use of the new potential significantly improves the performance of docking for antibody-protein antigen complexes, even without any sequence information on the location of the paratope. We note that the asymmetric potential captures the effects of the multi-body interactions inherent to the complex environment in the antibody-protein antigen interface. AVAILABILITY: The method is implemented in the ClusPro protein docking server, available at http://cluspro.bu.edu.


Assuntos
Complexo Antígeno-Anticorpo/química , Simulação de Acoplamento Molecular/métodos , Proteínas/imunologia , Algoritmos , Complexo Antígeno-Anticorpo/metabolismo , Interpretação Estatística de Dados , Análise de Fourier , Bases de Conhecimento , Ligação Proteica , Proteínas/química , Proteínas/metabolismo
7.
Proteins ; 78(15): 3124-30, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20818657

RESUMO

Our approach to protein-protein docking includes three main steps. First, we run PIPER, a rigid body docking program based on the Fast Fourier Transform (FFT) correlation approach, extended to use pairwise interactions potentials. Second, the 1000 best energy conformations are clustered, and the 30 largest clusters are retained for refinement. Third, the stability of the clusters is analyzed by short Monte Carlo simulations, and the structures are refined by the medium-range optimization method SDU. The first two steps of this approach are implemented in the ClusPro 2.0 protein-protein docking server. Despite being fully automated, the last step is computationally too expensive to be included in the server. When comparing the models obtained in CAPRI rounds 13-19 by ClusPro, by the refinement of the ClusPro predictions and by all predictor groups, we arrived at three conclusions. First, for the first time in the CAPRI history, our automated ClusPro server was able to compete with the best human predictor groups. Second, selecting the top ranked models, our current protocol reliably generates high-quality structures of protein-protein complexes from the structures of separately crystallized proteins, even in the absence of biological information, provided that there is limited backbone conformational change. Third, despite occasional successes, homology modeling requires further improvement to achieve reliable docking results.


Assuntos
Biologia Computacional/métodos , Modelos Químicos , Proteínas/química , Software , Algoritmos , Análise por Conglomerados , Simulação de Dinâmica Molecular , Método de Monte Carlo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas/metabolismo
8.
Biophys J ; 95(9): 4217-27, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18676649

RESUMO

Decoys As the Reference State (DARS) is a simple and natural approach to the construction of structure-based intermolecular potentials. The idea is generating a large set of docked conformations with good shape complementarity but without accounting for atom types, and using the frequency of interactions extracted from these decoys as the reference state. In principle, the resulting potential is ideal for finding near-native conformations among structures obtained by docking, and can be combined with other energy terms to be used directly in docking calculations. We investigated the performance of various DARS versions for docking enzyme-inhibitor, antigen-antibody, and other type of complexes. For enzyme-inhibitor pairs, DARS provides both excellent discrimination and docking results, even with very small decoy sets. For antigen-antibody complexes, DARS is slightly better than a number of interaction potentials tested, but results are worse than for enzyme-inhibitor complexes. With a few exceptions, the DARS docking results are also good for the other complexes, despite poor discrimination, and we show that the latter is not a correct test for docking accuracy. The analysis of interactions in antigen-antibody pairs reveals that, in constructing pairwise potentials for such complexes, one should account for the asymmetry of hydrophobic patches on the two sides of the interface. Similar asymmetry does occur in the few other complexes with poor DARS docking results.


Assuntos
Modelos Moleculares , Complexo Antígeno-Anticorpo , Inibidores Enzimáticos/metabolismo , Enzimas/metabolismo , Ligação Proteica
9.
Proteins ; 69(4): 781-5, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17876812

RESUMO

ClusPro is the first fully automated, web-based program for docking protein structures. Users may upload the coordinate files of two protein structures through ClusPro's web interface, or enter the PDB codes of the respective structures. The server performs rigid body docking, energy screening, and clustering to produce models. The program output is a short list of putative complexes ranked according to their clustering properties. ClusPro has been participating in CAPRI since January 2003, submitting predictions within 24 h after a target becomes available. In Rounds 6-11, ClusPro generated acceptable submissions for Targets 22, 25, and 27. In general, acceptable models were obtained for the relatively easy targets without substantial conformational changes upon binding. We also describe the new version of ClusPro that incorporates our recently developed docking program PIPER. PIPER is based on the fast Fourier transform correlation approach, but the method is extended to use pairwise interaction potentials, thereby increasing the number of near-native docked structures.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Mapeamento de Interação de Proteínas , Proteínas/química , Proteômica/métodos , Algoritmos , Automação , Bases de Dados de Proteínas , Dimerização , Desenho de Equipamento , Escherichia coli/metabolismo , Genômica , Internet , Conformação Molecular , Ligação Proteica , Conformação Proteica , Software
10.
Proteins ; 69(4): 734-42, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17853451

RESUMO

Our approach to protein-protein docking includes three main steps. First we run PIPER, a new rigid body docking program. PIPER is based on the Fast Fourier Transform (FFT) correlation approach that has been extended to use pairwise interactions potentials, thereby substantially increasing the number of near-native structures generated. The interaction potential is also new, based on the DARS (Decoys As the Reference State) principle. In the second step, the 1000 best energy conformations are clustered, and the 30 largest clusters are retained for refinement. Third, the conformations are refined by a new medium-range optimization method SDU (Semi-Definite programming based Underestimation). SDU has been developed to locate global minima within regions of the conformational space in which the energy function is funnel-like. The method constructs a convex quadratic underestimator function based on a set of local energy minima, and uses this function to guide future sampling. The combined method performed reliably without the direct use of biological information in most CAPRI problems that did not require homology modeling, providing acceptable predictions for targets 21, and medium quality predictions for targets 25 and 26.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Mapeamento de Interação de Proteínas , Proteínas/química , Proteômica/métodos , Algoritmos , Análise por Conglomerados , Bases de Dados de Proteínas , Escherichia coli/metabolismo , Análise de Fourier , Modelos Estatísticos , Método de Monte Carlo , Ligação Proteica , Conformação Proteica , Software
11.
Proteins ; 65(2): 392-406, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16933295

RESUMO

The Fast Fourier Transform (FFT) correlation approach to protein-protein docking can evaluate the energies of billions of docked conformations on a grid if the energy is described in the form of a correlation function. Here, this restriction is removed, and the approach is efficiently used with pairwise interaction potentials that substantially improve the docking results. The basic idea is approximating the interaction matrix by its eigenvectors corresponding to the few dominant eigenvalues, resulting in an energy expression written as the sum of a few correlation functions, and solving the problem by repeated FFT calculations. In addition to describing how the method is implemented, we present a novel class of structure-based pairwise intermolecular potentials. The DARS (Decoys As the Reference State) potentials are extracted from structures of protein-protein complexes and use large sets of docked conformations as decoys to derive atom pair distributions in the reference state. The current version of the DARS potential works well for enzyme-inhibitor complexes. With the new FFT-based program, DARS provides much better docking results than the earlier approaches, in many cases generating 50% more near-native docked conformations. Although the potential is far from optimal for antibody-antigen pairs, the results are still slightly better than those given by an earlier FFT method. The docking program PIPER is freely available for noncommercial applications.


Assuntos
Proteínas/química , Proteínas/metabolismo , Anticorpos/química , Anticorpos/imunologia , Anticorpos/metabolismo , Antígenos/química , Antígenos/imunologia , Antígenos/metabolismo , Biologia Computacional , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Análise de Fourier , Modelos Biológicos , Ligação Proteica , Eletricidade Estática , Fatores de Tempo
12.
Proteins ; 60(2): 239-44, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15981265

RESUMO

To evaluate the current status of the protein-protein docking field, the CAPRI experiment came to life. Researchers are given the receptor and ligand 3-dimensional (3D) coordinates before the cocrystallized complex is published. Human predictions of the complex structure are supposed to be submitted within 3 weeks, whereas the server ClusPro has only 24 h and does not make use of any biochemical information. From the 10 targets analyzed in the second evaluation meeting of CAPRI, ClusPro was able to predict meaningful models for 5 targets using only empirical free energy estimates. For two of the targets, the server predictions were assessed to be among the best in the field. Namely, for Targets 8 and 12, ClusPro predicted the model with the most accurate binding-site interface and the model with the highest percentage of nativelike contacts, among 180 and 230 submissions, respectively. After CAPRI, the server has been further developed to predict oligomeric assemblies, and new tools now allow the user to restrict the search for the complex to specific regions on the protein surface, significantly enhancing the predictive capabilities of the server. The performance of ClusPro in CAPRI Rounds 3-5 suggests that clustering the low free energy (i.e., desolvation and electrostatic energy) conformations of a homogeneous conformational sampling of the binding interface is a fast and reliable procedure to detect protein-protein interactions and eliminate false positives. Not including targets that had a significant structural rearrangement upon binding, the success rate of ClusPro was found to be around 71%.


Assuntos
Biologia Computacional/métodos , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Algoritmos , Animais , Simulação por Computador , Bases de Dados de Proteínas , Dimerização , Humanos , Internet , Substâncias Macromoleculares , Modelos Moleculares , Modelos Estatísticos , Conformação Molecular , Mutação , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Software , Eletricidade Estática , Homologia Estrutural de Proteína , Termodinâmica
13.
J Struct Biol ; 150(3): 233-44, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15890272

RESUMO

Multi-protein complexes play key roles in many biological processes. However, since the structures of these assemblies are hard to resolve experimentally, the detailed mechanism of how they work cooperatively in the cell has remained elusive. Similarly, recent advances on in silico prediction of protein-protein interactions have so far avoided this difficult problem. In this paper, we present a general algorithm to predict molecular assemblies of homo-oligomers. Given the number of N-mers and the 3D structure of one monomer, the method samples all the possible symmetries that N-mers can be assembled. Based on a scoring function that clusters the low free energy structures at each binding interface, the algorithm predicts the complex structure as well as the symmetry of the protein assembly. The method is quite general and does not involve any free parameters. The algorithm has been implemented as a public server and integrated to the protein-protein complex prediction server ClusPro. Using this application, we validated predictions for trimers, tetramers (discriminating between dimer of dimers and 4-fold symmetry structures), pentamers and hexamers (discriminating between trimer of dimers, dimer of trimers, and 6-fold symmetry structures), for a total of 107 assemblies. For 85% of the multimers, the server predicts the complex structure within an average rms deviation of 2A from the full crystal. For complexes that involve more than one binding interface, the cluster size at each surface provides a strong indication as to which interface forms first. With improving scoring functions and computer power, our multimer docking approach could be used as a framework to address the more general problem of multi-protein assemblies.


Assuntos
Complexos Multiproteicos/química , Proteômica/métodos , Algoritmos , Animais , Análise por Conglomerados , Cristalografia por Raios X , Bases de Dados de Proteínas , Dimerização , Humanos , Modelos Moleculares , Conformação Proteica , Software
14.
Nucleic Acids Res ; 32(Web Server issue): W96-9, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15215358

RESUMO

ClusPro (http://nrc.bu.edu/cluster) represents the first fully automated, web-based program for the computational docking of protein structures. Users may upload the coordinate files of two protein structures through ClusPro's web interface, or enter the PDB codes of the respective structures, which ClusPro will then download from the PDB server (http://www.rcsb.org/pdb/). The docking algorithms evaluate billions of putative complexes, retaining a preset number with favorable surface complementarities. A filtering method is then applied to this set of structures, selecting those with good electrostatic and desolvation free energies for further clustering. The program output is a short list of putative complexes ranked according to their clustering properties, which is automatically sent back to the user via email.


Assuntos
Algoritmos , Mapeamento de Interação de Proteínas , Software , Internet , Modelos Moleculares , Interface Usuário-Computador
15.
Bioinformatics ; 20(1): 45-50, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14693807

RESUMO

MOTIVATION: Predicting protein interactions is one of the most challenging problems in functional genomics. Given two proteins known to interact, current docking methods evaluate billions of docked conformations by simple scoring functions, and in addition to near-native structures yield many false positives, i.e. structures with good surface complementarity but far from the native. RESULTS: We have developed a fast algorithm for filtering docked conformations with good surface complementarity, and ranking them based on their clustering properties. The free energy filters select complexes with lowest desolvation and electrostatic energies. Clustering is then used to smooth the local minima and to select the ones with the broadest energy wells-a property associated with the free energy at the binding site. The robustness of the method was tested on sets of 2000 docked conformations generated for 48 pairs of interacting proteins. In 31 of these cases, the top 10 predictions include at least one near-native complex, with an average RMSD of 5 A from the native structure. The docking and discrimination method also provides good results for a number of complexes that were used as targets in the Critical Assessment of PRedictions of Interactions experiment. AVAILABILITY: The fully automated docking and discrimination server ClusPro can be found at http://structure.bu.edu


Assuntos
Algoritmos , Análise por Conglomerados , Modelos Químicos , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/classificação , Sítios de Ligação , Análise Discriminante , Transferência de Energia , Conformação Proteica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...